
Runge-Kutta Methods with Constrained 
Minimum Error Bounds* 

By Richard King 

Abstract. Optimum Runge-Kutta methods of orders n = 2, 3, and 4 are de- 
veloped for the differential equation y' = f(x, y) under Lotkin's conlditions on the 
bounds for f and its partial derivatives, and with the constraint that the coefficient 
of )mflaxm in the leading error term be zero. The methods then attain higher order 
when it happens that f is independent of y. 

1. Introduction. Anthony Ralston in [3] developed optimum Runge-Kutta 
methods of orders two, three, and four for a single first-order differential equation 
y' = f(x, y). They are best in the sense that in each case the sum of the magnitudes 
of the coefficienits in the leadinig truncation error term assumes a minimum under the 
following conditions: in the region of interest, 

(1.1) ai+jf < Li+jlMj-l 
(1.1) 

~ ~f (x, y) I< M/ and<L/M' 

where Ml and L are constants and i + j < m. These are the conditionis used by 
Lotkin in [2]. Here, using Ralston's notation, the solution is to be advanced from 
xO to xl, x2, ... by the mnth-order Runge-Kutta approximation 

m 
(1.2) Yn+1 = Yn + wiki, 

where yn = y(xn), the wi are constants, 

(1.3) ki = hf 14 + aih, yn + E ijkj), 
j=1 

and h = Xn+- . For each such approximation, it turns out that al = 0 and 
i-i 

(1.4) ai= ij, i = 2, 3, - ,m. 
j=1 

The leading truncation error term, Ehm+l, then satisfies 

(1.5) 1 Eh-+1 I < cMLmhm+l; 

Ralston minimized c as a function of the parameters to be determined. Other meas- 
ures of the truncation error have been conisidered by Hull and Johnston [1]. 

Our purpose is to find optimum methods of orders m = 2, 3, and 4 which will 
attain higher order when it happens that f is independent of y. This requires that in 
each case the coefficient of amflaxm (and, in fact, of Dmf) in the leading error term be 
zero; here D is defined as 

(1.6) D = d/dx + fn 0/Oy, fn = f(xn v Y.), 

and 
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(1.7) D =Z (k) f d /8k0 k 

k~O \Ik 

FurthermLore, the vanishing of the term involving D"'f implies that conditiorns 
(1.1) need only be satisfied for i + j < n- 1. 

2. Second-order Methods. The coefficient of h3 in the error funietioni is 

(2.1) E = [6- (a222w2/2)]D2f + [flfyDf. 
Equating the coefficient of D2f to zero yields 

(2.2) =2 = /321 = 3a, WV = W W2 =4 

so that the procedure becomes 

(2.3) yn+- yn = (-)hf (x. , y.) + (4)hf (x. + (2)h, yn + (2)hf.). 
This is the same as Ralston's second-order method, and the truncationi error is 

(2.4) I Eh I < (')ML 2h. 

In this instance, no minimization problem appears. For f independent of y the 
procedure becomes Radau quadrature of order 3. 

3. Third-order Methods. Here the coefficient of h4 in the error function is given by 

(3.1) E- aD3f + a2fyD2f + a3DfDfy + a4f,2Df, 

where 
1 1 3 3 

ai = - - (a2W2 + a3W3), 
4! 3! 

1 1 2 
a2 = - a2 2032W3, 41 21 

(3.2) 
a3 

3 
- a2a3f332W3, 

4! 

a4 =-. 
4! 

But the vanishing of a, implies that 

(3.3) 6a2a3 - 4(a2 + a3) + 3 = 0. 

Along this hyperbola the error is bounded as follows: 

(3.4) E I < [I a2 1+ 12a2+ a3 1+ I a2+ a3 1+ 21 a3 1+ 21 a4 IJ]ML3, 
with 

1 a2 
a2 = - - 

(3.5) a3 = - 

a4 24 
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If we now substitute (3.3) into (3.4) and minimnize the right-hand side of (3.4) 
(as a fun-ction of a2 or of 3 ), we get a2 = a, a3 = 6. With these paranmeter values 
the suggested procedure beconmes 

(3.6) Yn+1 - Yn = --jok1 + 1k2 + -k3, 

where 

ki = hf(x , y,), 

(3.7) k2= hf(xn + lh, yn + lk1), 

k3 = hf(xn + %h, yn -_ 5 ki + 5k2). 

The resulting bound on Eh4 iS 

(3.8) I Eh4j < .1389ML3h4, 

compared with .1 lllML3h4, in Ralston's third-order procedure. 
But if f is independent of y, then the procedure is fourth-order instead of third 

and the error bound is 

(3.9) | Eh5 < 3.858 X 10W5ML4h5. 

4. Fourth-order Methods. If we set to zero the coefficient 

( 4.1 ) bl = 1 2 0- T(a24 W2 + a34w3 + W4) 

of D4f in the leading error term, we again get an hyperbola in a2 and aX3 

(4.2) 10a2a3 - 5(a2 + a3) + 3 = 0. 

Along this curve b3 =-4b, vanishes also. The elements in 

(4.3) 
1 E I < [81 b2l + 81 

b4[ 

+ [b5[ + 1 2b5 + b7 1+ 
? 

b5 + 
b7[ 

+ jb6| + I 2b6 + b7 I + I b7 I + 21 b8 J]ML4 

then become (see [1], p. 307) 
5aL3 -3 Xa3- 1-a3 

240 - 240(2a3 1)' b5 = = 240(2a3 -1)' 

(25Oa3 - 300za33 + 1032 + 93a3 - 27) 
[(240)(10a3 2 12a3 + 3)] 

2-5a3 1 
120 ' 120 

Minimizing the right-hand side of (4.3) along the hyperbola (4.2), we get 

4 -(6) 1/2 4 + (6)1/2 
(4.5a) a2 10 - .1550510257, a3 10 .6449489743, 

so that 
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16 - (6)1/2 16 + (6)1/2 1 
WI = 03 w =3= , W4 = 9 

4 - (6)1/2 11 + 4(6) 1/2 
a4s = 17 0321 = 7 1031 - 

(4.5b ) 42 + 13(6) 1/2 1 + 5(6)1/2 
f332 - t3l50 = 4 

;42 = - (3 + 2(6)1/2) = 9 - (6)1/2 

This defines the following Runge-Kutta scheme: 

(4.6) Yn?i - Yn = .3764030627k2 + .5124858262k3 + .1111111111k4, 

with 

ki = hf(x. , yn), 

k2 = hf(xn + .1550510257h, y. + .1550510257k1), 
(4.7) k3 =hf(xn + .6449489743h, yn - .8319183588k, + 1.476867333k2), 

k4 =hf(x. + h, yn + 3.311862178k, - 3.949489743k2 + 1.637627564k3). 

The error bound is 

(4.8) Ehs < ( 
40 ML?h4 = .0944ML4h5, 

as compared with 

(4.9) Eh51 < .0546M1L4h5 

for Ralston's fourth-order procedure. 
In this case the method becomes fifth order when f is independent of y, with 

error bound 

(4.10) Eh6 1< 1.389 X 10-5 ML5h6. 

5. An Additional Constraint. Now suppose we consider the second error term- 
that involving hm?2. In this term, setting the coefficient of Dm+lf to zero leads to 

(5.1) 10a2a3 - 5(a2 + a3) + 3 = 0 

for third-order methods and to 

(5.2) 2(a22a3 + a2a3 ) - (a22 -a2a3 + a32) - (a2 + a3) + 1 = 0 

for fourth-order methods. The intersection of (5.1) and (3.3) is the point 

16 - (6)1/2 6 + (6)1/2\ 
(a2, 3)= 10 ' 10 p 

which determines the parameters 
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1 16 + (6)1/2 16 - (6)1/2 
Wl = 9 W2 36 - W3 = 36 

(5.3) (6)1/2 d3=_ (54 + 19(6)) 32 102 + 22(6)1/ 
(32 

125012 

and thus defines the third-order procedure 

(5.4) yn-+ - yn - .1111111111k, + .5124858262k2 + .3764030627k3, 

where 

ki = Ilf(xn , Yn) 

(5.5) k2 = hf(xn + .3550510257h, yn + .3550510257k1) 

k3 = hf(xn + .8449489743h, yn - .4021612205k1 + 1.247110195k2), 

with 

(5.6) IEh4I < .1391ML3h4. 

For derivative functions f that are independent of y, this procedure becomes 
Radau quadrature of order five with leading error term 

(5.7) I Eh6 1< 1.389 X 10-5ML5h6. 

Similarly, (5.2) and (4.2) intersect at 

(5 - (5)"' 5 + (5)1/2) 
(0t20t3)= V 10 10 

to yield 

1 5 5 1 
Wi = W2= 12 W3 = 12 W4 = 12' 

(5.8) 4= 1, 021 = 5 (5)12 31 = (5+ 3(5) 1/2) 32 3 + (5)1/2 

-1 + 5(5)112 /5 + 3(5)1/2\ 5 (5)1/2 
0341 /342= -0 J 4 ' 43 = 2 

This is the fourth-order system 

Yn+? - Yn =.08333333333k1 + .4166666667k2 + .4166666667k3 

+ .08333333333k4, 
where 

k= hf(xn, yn), 

=k2 hf(xn + .2763932023h, yn + .2763932023k1), 
(5.10) 

k3 = hf(xn + .7236067977h, yn - .5854101966k1 + 1.309016994k2), 

k4= hf(xn + h, Yn + 2.545084972k1 - 2.927050983k2 + 1.381966011k3), 

with 

(5.11) IEh5 I < .1218ML4h5. 
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For f independent of y, (5.9, 10) is Lobatto's sixth-order quadrature formula, with 
truncation error 

(5.12) I Eh7 I < 6.614 X lo7ML6h7. 

The restriction that a4 1, however, precludes having a fourth-order integration 
scheme corresponding to Radau quadrature, which in this case is of order seven. 

6. Examples. Both of Ralston's examples and several others have been pro- 
grammed for a CONTROL DATA 3600 computer, using all of the proposed 
methods. Results were, as good as those for the Ralston schemes. Furthermore, the 
suggested procedures (3.6, 7), (4.6, 7), (5.4, 5), and (5.9, 10) did indeed produce 
results of the predicted order of accuracy when the example 

(6.1) Y = y, y(0) = 1, solution y(x) = ex 

was redone with y' =e. That is, the integration procedures reduce to high-order 
quadrature formulas and thus could be used to do double duty in a subroutine 
library. 
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