# Runge-Kutta Methods with Constrained Minimum Error Bounds* 

By Richard King


#### Abstract

Optimum Runge-Kutta methods of orders $m=2,3$, and 4 are developed for the differential equation $y^{\prime}=f(x, y)$ under Lotkin's conditions on the bounds for $f$ and its partial derivatives, and with the constraint that the coefficient of $\partial^{m} f / \partial x^{m}$ in the leading error term be zero. The methods then attain higher order when it happens that $f$ is independent of $y$.


1. Introduction. Anthony Ralston in [3] developed optimum Runge-Kutta methods of orders two, three, and four for a single first-order differential equation $y^{\prime}=f(x, y)$. They are best in the sense that in each case the sum of the magnitudes of the coefficients in the leading truncation error term assumes a minimum under the following conditions: in the region of interest,

$$
\begin{equation*}
|f(x, y)|<M \quad \text { and } \quad\left|\frac{\partial^{i+j} f}{\partial x^{i} \partial y^{j}}\right|<L^{i+j} / M^{j-1} \tag{1.1}
\end{equation*}
$$

where $M$ and $L$ are constants and $i+j \leqq m$. These are the conditions used by Lotkin in [2]. Here, using Ralston's notation, the solution is to be advanced from $x_{0}$ to $x_{1}, x_{2}, \cdots$ by the $m$ th-order Runge-Kutta approximation

$$
\begin{equation*}
y_{n+1}=y_{n}+\sum_{i=1}^{m} w_{i} k_{i}, \tag{1.2}
\end{equation*}
$$

where $y_{n}=y\left(x_{n}\right)$, the $w_{i}$ are constants,

$$
\begin{equation*}
k_{i}=h f\left(x_{n}+\alpha_{i} h, y_{n}+\sum_{j=1}^{i-1} \beta_{i j} k_{j}\right), \tag{1.3}
\end{equation*}
$$

and $h=x_{n+1}-x_{n}$. For each such approximation, it turns out that $\alpha_{1}=0$ and

$$
\begin{equation*}
\alpha_{i}=\sum_{j=1}^{i-1} \beta_{i j}, \quad i=2,3, \cdots, m . \tag{1.4}
\end{equation*}
$$

The leading truncation error term, $E h^{m+1}$, then satisfies

$$
\begin{equation*}
\left|E h^{m+1}\right|<c M L^{m} h^{m+1} \tag{1.5}
\end{equation*}
$$

Ralston minimized $c$ as a function of the parameters to be determined. Other measures of the truncation error have been considered by Hull and Johnston [1].

Our purpose is to find optimum methods of orders $m=2,3$, and 4 which will attain higher order when it happens that $f$ is independent of $y$. This requires that in each case the coefficient of $\partial^{m} f / \partial x^{m}$ (and, in fact, of $D^{m} f$ ) in the leading error term be zero; here $D$ is defined as

$$
\begin{equation*}
D=\partial / \partial x+f_{n} \partial / \partial y, \quad f_{n}=f\left(x_{n}, y_{n}\right), \tag{1.6}
\end{equation*}
$$

and

[^0]\[

$$
\begin{equation*}
D^{s}=\sum_{k=0}^{s}\binom{s}{k} f^{k} \partial^{s} / \partial x^{s-k} \partial y^{k} . \tag{1.7}
\end{equation*}
$$

\]

Furthermore, the vanishing of the term involving $D^{m} f$ implies that conditions (1.1) need only be satisfied for $i+j \leqq m-1$.
2. Second-order Methods. The coefficient of $h^{3}$ in the error function is

$$
\begin{equation*}
E=\left[\frac{1}{6}-\left(\alpha_{2}{ }^{2} w_{2} / 2\right)\right] D^{2} f+\left[\frac{1}{6}\right] f_{y} D f . \tag{2.1}
\end{equation*}
$$

Equating the coefficient of $D^{2} f$ to zero yields

$$
\begin{equation*}
\alpha_{2}=\frac{2}{3}, \quad \beta_{21}=\frac{2}{3}, \quad w_{1}=\frac{1}{4}, \quad w_{2}=\frac{3}{4}, \tag{2.2}
\end{equation*}
$$

so that the procedure becomes

$$
\begin{equation*}
y_{n+1}-y_{n}=\left(\frac{1}{4}\right) h f\left(x_{n}, y_{n}\right)+\left(\frac{3}{4}\right) h f\left(x_{n}+\left(\frac{2}{3}\right) h, y_{n}+\left(\frac{2}{3}\right) h f_{n}\right) . \tag{2.3}
\end{equation*}
$$

This is the same as Ralston's second-order method, and the truncation error is

$$
\begin{equation*}
\left|E h^{3}\right|<\left(\frac{1}{3}\right) M L^{2} h^{3} \tag{2.4}
\end{equation*}
$$

In this instance, no minimization problem appears. For $f$ independent of $y$ the procedure becomes Radau quadrature of order 3.
3. Third-order Methods. Here the coefficient of $h^{4}$ in the error function is given by

$$
\begin{equation*}
E=a_{1} D^{3} f+a_{2} f_{y} D^{2} f+a_{3} D f D f_{y}+a_{4} f_{y}^{2} D f \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1}=\frac{1}{4!}-\frac{1}{3!}\left(\alpha_{2}^{3} w_{2}+\alpha_{3}^{3} w_{3}\right), \\
& a_{2}=\frac{1}{4!}-\frac{1}{2!} \alpha_{2}^{2} \beta_{32} w_{3},  \tag{3.2}\\
& a_{3}=\frac{3}{4!}-\alpha_{2} \alpha_{3} \beta_{32} w_{3}, \\
& a_{4}=\frac{1}{4!} .
\end{align*}
$$

But the vanishing of $a_{1}$ implies that

$$
\begin{equation*}
6 \alpha_{2} \alpha_{3}-4\left(\alpha_{2}+\alpha_{3}\right)+3=0 \tag{3.3}
\end{equation*}
$$

Along this hyperbola the error is bounded as follows:

$$
\begin{equation*}
|E|<\left[\left|a_{2}\right|+\left|2 a_{2}+a_{3}\right|+\left|a_{2}+a_{3}\right|+2\left|a_{3}\right|+2\left|a_{4}\right|\right] M L^{3}, \tag{3.4}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{2}=\frac{1}{24}-\frac{\alpha_{2}}{12} \\
& a_{3}=\frac{1}{8}-\frac{\alpha_{3}}{6}  \tag{3.5}\\
& a_{4}=\frac{1}{24} .
\end{align*}
$$

If we now substitute (3.3) into (3.4) and minimize the right-hand side of (3.4) (as a function of $\alpha_{2}$ or of $\alpha_{3}$ ), we get $\alpha_{2}=\frac{1}{3}, \alpha_{3}=\frac{5}{6}$. With these parameter values the suggested procedure becomes

$$
\begin{equation*}
y_{n+1}-y_{n}=\frac{1}{10} k_{1}+\frac{1}{2} k_{2}+\frac{2}{5} k_{3} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{align*}
k_{1} & =h f\left(x_{n}, y_{n}\right) \\
k_{2} & =h f\left(x_{n}+\frac{1}{3} h, y_{n}+\frac{1}{3} k_{1}\right),  \tag{3.7}\\
k_{3} & =h f\left(x_{n}+\frac{5}{6} h, y_{n}-\frac{5}{12} k_{1}+\frac{5}{4} k_{2}\right)
\end{align*}
$$

The resulting bound on $E h^{4}$ is

$$
\begin{equation*}
\left|E h^{4}\right|<.1389 M L^{3} h^{4} \tag{3.8}
\end{equation*}
$$

compared with . $1111 M L^{3} h^{4}$, in Ralston's third-order procedure.
But if $f$ is independent of $y$, then the procedure is fourth-order instead of third and the error bound is

$$
\begin{equation*}
\left|E h^{5}\right|<3.858 \times 10^{-5} M L^{4} h^{5} \tag{3.9}
\end{equation*}
$$

4. Fourth-order Methods. If we set to zero the coefficient

$$
\begin{equation*}
b_{1}=\frac{1}{12 \overline{0}}-\frac{1}{24}\left(\alpha_{2}^{4} w_{2}+\alpha_{3}^{4} w_{3}+w_{4}\right) \tag{4.1}
\end{equation*}
$$

of $D^{4} f$ in the leading error term, we again get an hyperbola in $\alpha_{2}$ and $\alpha_{3}$ :

$$
\begin{equation*}
10 \alpha_{2} \alpha_{3}-5\left(\alpha_{2}+\alpha_{3}\right)+3=0 \tag{4.2}
\end{equation*}
$$

Along this curve $b_{3}=-4 b_{1}$ vanishes also. The elements in

$$
\begin{align*}
|E|<\left[8\left|b_{2}\right|+8\left|b_{4}\right|+\left|b_{5}\right|\right. & +\left|2 b_{5}+b_{7}\right|+\left|b_{5}+b_{6}+b_{7}\right| \\
& \left.+\left|b_{6}\right|+\left|2 b_{6}+b_{7}\right|+\left|b_{7}\right|+2\left|b_{8}\right|\right] M L^{4} \tag{4.3}
\end{align*}
$$

then become (see [1], p. 307)

$$
\begin{align*}
& b_{2}=\frac{5 \alpha_{3}-3}{240}, \quad b_{4}=\frac{\alpha_{3}-1}{240\left(2 \alpha_{3}-1\right)}, \quad b_{5}=-b_{4}=\frac{1-\alpha_{3}}{240\left(2 \alpha_{3}-1\right)} \\
& b_{6}=\frac{\left(250 \alpha_{3}^{4}-300 \alpha_{3}^{3}+10 \alpha_{3}^{2}+93 \alpha_{3}-27\right)}{\left[(240)\left(10 \alpha_{3}^{2}-12 \alpha_{3}+3\right)\right]}  \tag{4.4}\\
& b_{7}=\frac{2-5 \alpha_{3}}{120}, \quad b_{8}=\frac{1}{120}
\end{align*}
$$

Minimizing the right-hand side of (4.3) along the hyperbola (4.2), we get (4.5a) $\quad \alpha_{2}=\frac{4-(6)^{1 / 2}}{10}=.1550510257, \quad \alpha_{3}=\frac{4+(6)^{1 / 2}}{10}=.6449489743$, so that

$$
\begin{align*}
& w_{1}=0, \quad w_{2}=\frac{16-(6)^{1 / 2}}{36}, \quad w_{3}=\frac{16+(6)^{1 / 2}}{36}, \quad w_{4}=\frac{1}{9}, \\
& \alpha_{4}=1, \quad \beta_{21}=\frac{4-(6)^{1 / 2}}{10}, \quad \beta_{31}=-\left(\frac{11+4(6)^{1 / 2}}{25}\right), \\
& \beta_{32}=\frac{42+13(6)^{1 / 2}}{50}, \quad \beta_{41}=\frac{1+5(6)^{1 / 2}}{4},  \tag{4.5b}\\
& \beta_{42}=-\left(\frac{3+2(6)^{1 / 2}}{2}\right), \quad \beta_{43}=\frac{9-(6)^{1 / 2}}{4}
\end{align*}
$$

This defines the following Runge-Kutta scheme:

$$
\begin{equation*}
y_{n+1}-y_{n}=.3764030627 k_{2}+.5124858262 k_{3}+.1111111111 k_{4} \tag{4.6}
\end{equation*}
$$ with

$$
\begin{align*}
& k_{1}=h f\left(x_{n}, y_{n}\right), \\
& k_{2}=h f\left(x_{n}+.1550510257 h, y_{n}+.1550510257 k_{1}\right),  \tag{4.7}\\
& k_{3}=h f\left(x_{n}+.6449489743 h, y_{n}-.8319183588 k_{1}+1.476867333 k_{2}\right), \\
& k_{4}=h f\left(x_{n}+h, y_{n}+3.311862178 k_{1}-3.949489743 k_{2}+1.637627564 k_{3}\right) .
\end{align*}
$$

The error bound is

$$
\begin{equation*}
\left|E h^{5}\right|<\left(\frac{11+14(6)^{1 / 2}}{480}\right) M L^{4} h^{5}=.0944 M L^{4} h^{5} \tag{4.8}
\end{equation*}
$$

as compared with

$$
\begin{equation*}
\left|E h^{5}\right|<.0546 M L^{4} h^{5} \tag{4.9}
\end{equation*}
$$

for Ralston's fourth-order procedure.
In this case the method becomes fifth order when $f$ is independent of $y$, with error bound

$$
\begin{equation*}
\left|E h^{6}\right|<1.389 \times 10^{-5} M L^{5} h^{6} \tag{4.10}
\end{equation*}
$$

5. An Additional Constraint. Now suppose we consider the second error termthat involving $h^{m+2}$. In this term, setting the coefficient of $D^{m+1} f$ to zero leads to

$$
\begin{equation*}
10 \alpha_{2} \alpha_{3}-5\left(\alpha_{2}+\alpha_{3}\right)+3=0 \tag{5.1}
\end{equation*}
$$

for third-order methods and to

$$
\begin{equation*}
2\left(\alpha_{2}{ }^{2} \alpha_{3}+\alpha_{2} \alpha_{3}{ }^{2}\right)-\left(\alpha_{2}{ }^{2}-\alpha_{2} \alpha_{3}+\alpha_{3}{ }^{2}\right)-\left(\alpha_{2}+\alpha_{3}\right)+1=0 \tag{5.2}
\end{equation*}
$$

for fourth-order methods. The intersection of (5.1) and (3.3) is the point

$$
\left(\alpha_{2}, \alpha_{3}\right)=\left(\frac{6-(6)^{1 / 2}}{10}, \frac{6+(6)^{1 / 2}}{10}\right)
$$

which determines the parameters

$$
\begin{align*}
& w_{1}=\frac{1}{9}, \quad w_{2}=\frac{16+(6)^{1 / 2}}{36}, \quad w_{3}=\frac{16-(6)^{1 / 2}}{36} \\
& \beta_{21}=\frac{6-(6)^{1 / 2}}{10}, \quad \beta_{31}=-\left(\frac{54+19(6)^{1 / 2}}{250}\right), \quad \beta_{32}=\frac{102+22(6)^{1 / 2}}{125} \tag{5.3}
\end{align*}
$$

and thus defines the third-order procedure

$$
\begin{equation*}
y_{n+1}-y_{n}=.11111111111 k_{1}+.5124858262 k_{2}+.3764030627 k_{3} \tag{5.4}
\end{equation*}
$$ where

$$
\begin{align*}
& k_{1}=h f\left(x_{n}, y_{n}\right) \\
& k_{2}=h f\left(x_{n}+.3550510257 h, y_{n}+.3550510257 k_{1}\right)  \tag{5.5}\\
& k_{3}=h f\left(x_{n}+.8449489743 h, y_{n}-.4021612205 k_{1}+1.247110195 k_{2}\right)
\end{align*}
$$

with

$$
\begin{equation*}
\left|E h^{4}\right|<.1391 M L^{3} h^{4} \tag{5.6}
\end{equation*}
$$

For derivative functions $f$ that are independent of $y$, this procedure becomes Radau quadrature of order five with leading error term

$$
\begin{equation*}
\left|E h^{6}\right|<1.389 \times 10^{-5} M L^{5} h^{6} \tag{5.7}
\end{equation*}
$$

Similarly, (5.2) and (4.2) intersect at

$$
\left(\alpha_{2}, \alpha_{3}\right)=\left(\frac{5-(5)^{1 / 2}}{10}, \frac{5+(5)^{1 / 2}}{10}\right)
$$

to yield

$$
w_{1}=\frac{1}{12}, \quad w_{2}=\frac{5}{12}, \quad w_{3}=\frac{5}{12}, \quad w_{4}=\frac{1}{12}
$$

(5.8) $\alpha_{4}=1, \quad \beta_{21}=\frac{5-(5)^{1 / 2}}{10}, \quad \beta_{31}=-\left(\frac{5+3(5)^{1 / 2}}{20}\right), \quad \beta_{32}=\frac{3+(5)^{1 / 2}}{4}$,

$$
\beta_{41}=\frac{-1+5(5)^{1 / 2}}{4}, \quad \beta_{42}=-\left(\frac{5+3(5)^{1 / 2}}{4}\right), \quad \beta_{43}=\frac{5-(5)^{1 / 2}}{2}
$$

This is the fourth-order system

$$
\begin{array}{r}
y_{n+1}-y_{n}=.08333333333 k_{1}+.4166666667 k_{2}+.4166666667 k_{3}  \tag{5.9}\\
+.08333333333 k_{4}
\end{array}
$$

where

$$
\begin{align*}
& k_{1}=h f\left(x_{n}, y_{n}\right) \\
& k_{2}=h f\left(x_{n}+.2763932023 h, y_{n}+.2763932023 k_{1}\right)  \tag{5.10}\\
& k_{3}=h f\left(x_{n}+.7236067977 h, y_{n}-.5854101966 k_{1}+1.309016994 k_{2}\right) \\
& k_{4}=h f\left(x_{n}+h, y_{n}+2.545084972 k_{1}-2.927050983 k_{2}+1.381966011 k_{3}\right)
\end{align*}
$$

with

$$
\begin{equation*}
\left|E h^{5}\right|<.1218 M L^{4} h^{5} \tag{5.11}
\end{equation*}
$$

For $f$ independent of $y,(5.9,10)$ is Lobatto's sixth-order quadrature formula, with truncation error

$$
\begin{equation*}
\left|E h^{7}\right|<6.614 \times 10^{-7} M L^{6} h^{7} \tag{5.12}
\end{equation*}
$$

The restriction that $\alpha_{4}=1$, however, precludes having a fourth-order integration scheme corresponding to Radau quadrature, which in this case is of order seven.
6. Examples. Both of Ralston's examples and several others have been programmed for a CONTROL DATA 3600 computer, using all of the proposed methods. Results were as good as those for the Ralston schemes. Furthermore, the suggested procedures $(3.6,7),(4.6,7),(5.4,5)$, and $(5.9,10)$ did indeed produce results of the predicted order of accuracy when the example

$$
\begin{equation*}
y^{\prime}=y, \quad y(0)=1, \quad \text { solution } y(x)=e^{x} \tag{6.1}
\end{equation*}
$$

was redone with $y^{\prime}=e^{x}$. That is, the integration procedures reduce to high-order quadrature formulas and thus could be used to do double duty in a subroutine library.
7. Acknowledgment. D. L. Phillips not only gave constant encouragement and advice but also made the observation in the last paragraph of Section 1 and contributed the idea for Section 5.

Argonne National Laboratory
Argonne, Illinois.

1. T. E. Hull \& R. L. Johnston, "Optimum Runge-Kutta methods," Math. Comp., v. 18, 1964, pp. 306-310. MR 29 \#2980.
2. M. Lotkin, "On the accuracy of Runge-Kutta's method," MTAC, v. 5, 1951, pp. 128133. MR 13, 286.
3. A. Ralston, "Runge-Kutta methods with minimum error bounds," Math. Comp., v. 16, 1962, pp. 431-437; Corrigendum, v. 17, 1963, p. 488. MR 27 \#940.

[^0]:    Received November 17, 1965.

    * Work performed under the auspices of the U.S. Atomic Energy Commission.

